Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements

نویسندگان

  • Andreas Wutz
  • Evelyn Muschter
  • Martijn G. van Koningsbruggen
  • Nathan Weisz
  • David Melcher
چکیده

When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of saccadic eye movement signals into visual processing

Successful interpretation of visual motion requires information regarding ocular motion as well as information from retinal image motion. This suggests that eye movement information is integrated into visual motion perception and that the neural activity in visual cortex would be modulated by saccadic eye movements. We describe in this paper the characteristics of the neural activity in the cat...

متن کامل

Nonretinotopic visual processing in the brain.

A basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophys...

متن کامل

Multisensory interaction in saccadic reaction time: a time-window-of-integration model.

Saccadic reaction time to visual targets tends to be faster when stimuli from another modality (in particular, audition and touch) are presented in close temporal or spatial proximity even when subjects are instructed to ignore the accessory input (focused attention task). Multisensory interaction effects measured in neural structures involved in saccade generation (in particular, the superior ...

متن کامل

Trans-saccadic perception.

A basic question in cognition is how visual information obtained in separate glances can produce a stable, continuous percept. Previous explanations have included theories such as integration in a trans-saccadic buffer or storage in visual memory, or even that perception begins anew with each fixation. Converging evidence from primate neurophysiology, human psychophysics and neuroimaging indica...

متن کامل

Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements.

Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016